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Spiral tip meandering induced by excitability modulation
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Abstract. In this work, we introduce a spatiotemporal modulation for excitability into an excitable
medium, the Barkley model. The modulation can make the spiral wave tip meandering. Various types
of periodic spiral and quasiperiodic meandering spiral motions can be observed numerically by varying
the modulation. And the theoretical analysis for the conditions of Hopf bifurcation, based on an ordinary-
differential-equation (ODE) model, is applied to well explain the rich behaviors of numerical simulations.

PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer

1 Introduction

Spiral waves constitute an example of self-organizing ac-
tivity that have been observed in various excitable me-
dia such as Belousov-Zhabotinsky reactions [1,2], cardiac
muscles [3] and neural networks [4]. One common feature
of these waves is their tendency to meander [5–8]. Un-
der some conditions, the spiral tip does not trace out a
periodic circle, but instead follows a more complicated
quasiperiodic flower-shape trajectory, which may be epicy-
cloid, cycloidal, hypocycloid, and even random walk over
long timescales [9]. In the past few years, controlling
the motions of spiral waves has attracted much inter-
est [10–17]. Some researches aim at changing the dynamics
of spiral waves by applying certain kind of controlling
scheme to the system variables. For example, with mod-
ulation of the global feedback signals, the dynamical be-
havior of spiral waves can be essentially changed [10]. Al-
ternatively, both constant and periodic electric fields im-
posed on the excitable media can both produce spiral wave
drift [11,12], while the spiral tip can even be attracted
by the localized small-world connections in excitable sys-
tems [13]. Others aim at controlling the spiral dynamics
by modulating one of the system parameters. With peri-
odic sinusoidal signals, resonance drifts and entrainment
bands are observed in excitable media [14,15]. Applying
feedback controlling signals can also force the spiral tip ex-
ecute a circular trajectory [16,17]. It has been shown that
there are two vital independent parameters of excitable
media, the excitation threshold and the ratio of charac-
teristic rates of recovery and excitation, which determine
the excitability above the threshold. However, until now,
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most of the parametric modulating methods are carried
out through the former parameters and the investigation
of possible modulation of the latter parameter has been
much less [14–17]. This motivates us to investigate the spi-
ral dynamics under the modulation of the ratio of charac-
teristic rates of recovery and excitation of the excitability
of the medium, which is of crucial importance and of sys-
tem evolution dependence in general.

In this paper, we use the spatiotemporal force to mod-
ulate the ratio of characteristic rates of recovery and exci-
tation of the excitability of the medium, which determine
the excitability of the media above the excitation thresh-
old. The modulation can make the spiral tip meandering,
including inward-petal and outward-petal meandering, as
well as linear drift. In addition, we find that the modu-
lation mechanism can be interpreted by adding a similar
driving item to the ODE model [8,18]. The theoretical
predictions of the simplified ODE model system are con-
sistent with our numerical simulations in demonstrating
rich bifurcations to various meandering states.

2 Model with excitability modulation and
numerical simulations of meandering
trajectories

We introduce a spatiotemporal driving force for the pa-
rameter ε, which determines the excitability above the
threshold, into the Barkley Model [19]:

∂u

∂t
=

1
ε + E

u(1 − u)(u − v − b

a
) + ∇2u

∂v

∂t
= u − v (1)
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where a = 0.8, b = 0.05, ε = 0.02, under these conditions,
equations (1) have a rigidly rotating spiral wave solution
at E = 0. The driving term is

E =

{
0 t ≤ t0

γ1v

γ2 + u
t > t0.

(2)

In equation (2), t0 stands for the long transient time,
which means that the driving force E dose not work un-
til equations (1) have a periodic spiral solution (t > t0).
It is obvious that the driving force is zero at the steady
state (u = v = 0), and the excitability modulation
functions effectively where the variable states are excited
(u > 0, v > 0). The spatiotemporal modulation term equa-
tion (2) adopted here is based on the fact that the ex-
citability in a reaction diffusion system may be spatially
inhomogeneous and the evolution of the system is gen-
erally expected to influence the excitability. The reasons
why we choose the particular modulation form are two-
fold. On one hand, the form of equation (2) is very sim-
ple. On the other hand, most importantly, this modulation
form has some possibly practical implications in describ-
ing cardiac systems, which has been used to a cardiac
cell model [20] (i.e. AP model) in order to recover ap-
proximately the actual cardiac-cell restitution curve with
considerably simplified dynamic equations.

In the next section, we conduct numerical simulations
of equations (1), which are undertaken with zero flux
boundary conditions. Laplacian operator is discretisized
on a 240 × 240 lattice. The space step on the x and y di-
rections are both equal to h = 0.4. This diffusion term are
time stepped by the second-order Runge-Kutta method
with time step τ = 0.02. We take the spiral tip to be the
intersection of two contours, u = 0.5 and v = 0.5a− b.

When γ1 = 0, which means no driving force added,
equations (1) have a periodic spiral. The corresponding
tip trajectory is a circle, as shown in Figure 1a. When
γ1 �= 0, with excitability modulation, the spiral wave tip
leaves its previous circle trajectory and undergoes various
bifurcations to different types of meandering motions. For
simplicity, we fix the parameter γ2 = 1.0 and change pa-
rameter γ1 only for studying variation of the tip motions.

At γ1 = 0.1, the meandering tip has an outward-
petal (hypocycloid) trajectory, as shown in Figure 1b. For
γ1 = 0.154, the tip is subject to linear drift demonstrated
in Figure 1c. With γ1 = 0.18, the meandering tip trajec-
tory becomes an inward-petal (epicycloid) orbit, plotted
in Figure 1d. Increasing γ1 up to γ1 = 0.26, the tip is
eventually driven from its original circle(i.e. the circle of
Fig. 1a) to another circle trajectory, as shown in Figure 1e.

For having a global view of the distributions of differ-
ent patterns in the parameter (γ1, γ2) plane, we plot the
phase diagram in Figure 2, in which, from the up-left side
to the bottom-right side, the tip motion varies from sta-
tionary state (Region I, u = v = 0), to periodic circle (Re-
gion II), to quausiperiodic inward-petal meandering (Re-
gion III), to linear drift (Region IV, a single line region),
to outward-petal meandering (Region V), and finally to
periodic circle motion again (Region VI). Note, the circle

Fig. 1. Tip trajectories under different driving forces with
the conditions of a = 0.8, b = 0.05, ε = 0.02, γ2 = 1.0 in
equations (1). The little circle in (b)–(e) is the original circular
tip trajectory when t ≤ t0. (a) γ1 = 0.0, (b) γ1 = 0.1, (c)
γ1 = 0.154, (d) γ1 = 0.18, (e) γ1 = 0.26.

orbit in Region II is different from that of Figure 1a in
Region VI with both location and circle radius.

The mechanisms underlying the meandering behaviors
caused by the excitability modulation can be intuitively
understood as following. Because of the existence of pa-
rameter ε, the refractory variable v always lags behind the
active variable u in equations (1). The added driving item
E = γ1v

γ2+u will bring in a gradient distribution of excitabil-
ity along the normal direction of the spiral arm that makes
the excitability of the wave front of spiral greater than the
wave back. The weak excitability on the wave back then
makes the corresponding cells more difficult to be refrac-
tory and cause the separation of wave front and wave back.
The curvature near the spiral tip then decreases. Accord-
ing to the eikonal relation in an excitable medium [21],
this curvature decrease leads to that the increase of the
normal velocity of wave front near the spiral tip. Hence,
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Fig. 2. Phase diagram in parameter plane (γ1, γ2) of equa-
tions (1). The gray depth is determined by r2/r1 with r1 be-
ing the radius of secondary circle in the laboratory frame and
r2 being the radius of the elementary circle in the rotating
frame. For the homogeneous steady state of equations (1), we
set r2/r1 = −1. Six different regions are classified as: I steady
state; II and VI Periodic spirals; III Epicycloid spirals (inward-
petal meandering); IV line drift spirals; V Hypocycloid spirals
(outward-petal meandering).

the spiral tip cannot follow its original circular trajectory
any longer and begins to meander.

Meandering appears from periodic circle as the cause of
the supercritical Hopf bifurcation [22] that introduces the
second frequency into the basic system. Therefore, there
are two frequencies exist in the meandering solutions: one
is the original frequency ω1 of the periodic spiral, the other
is ω2 introduced by the Hopf bifurcation. The spiral tip
will perform a quasiperiodic flower-shape motion. When
the two frequencies equal to each other (on the Region IV,
in Fig. 2), the tip has linear drift trajectory. From Figure 2,
we can also find the different kinds of meandering motions,
one with inward petals (Region III, ω1 > ω2) and the
other with outward petals (Region V, ω1 < ω2). It is easy
to understand that as the driving force is sufficiently large
(large γ1), the excitability of the system becomes so weak
that it no longer sustains any spiral. The whole system
thus comes into the steady state (Region I). On the other
hand, when the driving force is small, Hopf bifurcation
cannot happen. The spiral tip can only keep its circular
periodic trajectory (Region VI).

3 Theoretical analysis based on the ODE
model

Apart from the above intuitive understanding of the ex-
citability modulation inducing meandering, we can further
study the effects of the excitability modulation in a more
analytical (though approximate) manner. We utilize the
ODE model [8,18] and bring certain driving force into
this model. If the tip motion of the ODE model system
agrees with the results of direct numerical simulations of

the reaction diffusion system equations (1) qualitatively,
we conclude that the added force in the ODE system has
attacked the essence of the excitability modulation.

The transition from rigidly rotating spiral to meander-
ing spirals is known as an epicycle motion superimposed
on the basic spiral wave circle. Barkley first gave the expla-
nation of the resonant meandering and revealed the Hopf
bifurcation from the steady state (rigidly rotating spirals)
to the quasiperiodic meandering state. And he proposed
a low-dimensional, weakly nonlinear ordinary-differential-
equation (ODE) model [8,18] to describe the Hopf bifur-
cation dynamics in the vicinity of such a codimension-two
point. This ODE model is invariant under a representation
of distance-preserving transformations of the plane (rota-
tions, reflections, and translations) and has rotating-wave
solutions which undergo a Hopf bifurcation. The simplest
form satisfying all the above symmetries reads (Eqs. (3)
in Ref. [8])

ẋ = s cosφ

ẏ = s sinφ

φ̇ = w · h(s2, w2) (3)
ṡ = s · f(s2, w2)
ẇ = w · g(s2, w2).

Where f, g and h have the expression:

f(s2, w2) = α0 + α1s
2 + α2w

2 − s4

g(s2, w2) = β1s
2 − w2 − 1 (4)

h(s2, w2) = γ0.

Following Barkley’s analysis, we simply take α0 =
−0.25, α1 = 7.0, α2 = −5.0, β1 = 1.0, γ0 =

√
28, fitting

the results of the original Barkley model without modula-
tion (i.e. E = 0 in Eqs. (1)) [8,18]. Under these conditions,
the trajectory of equations (3) in the phase space (x, y) is
a circle, which stands for a rigidly rotating spiral wave in
a real reaction diffusion system.

Basing on the analytic methods in reference [18], we
use p = s2, p ∈ R and q = w2, q ∈ R, and rewrite
equations (3) as:

ṗ = 2p · f(p, q)
q̇ = 2q · g(p, q) (5)

f(p, q) = −1
4

+ 7p− 5q − p2

g(p, q) = p − q − 1.

Up to now the formulas are generally valid for describing
the tip motion in excitable media. Now we add the ex-
citability modulation to equations (5). There is no exact
derivation specifying the modulation term in the ODE (5)
from the original PDE (1) and (2). We test this modula-
tion according to the requirements of simplicity, and fit-
ting of results of both the original PDE and the reduced
ODE. We try an ODE with modulation as

ṗ = 2p ·
[
f(p, q) +

µ1p

µ2 + q

]
q̇ = 2q · g(p, q) (6)
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where µ1 and µ2 in equations (6) qualitatively correspond
to the parameters γ1 and γ2 in equations (1), respectively.
We now analyze equations.(6) for searching conditions of
the Hopf bifurcation, which is the cause of tip meandering
from its original circle trajectory, and compare the results
of equations (6) with the numerical simulations of equa-
tions (1) and (2).

One of the steady state of equations (6) is p = q = 0,
which means the homogeneous rest state in the original
reaction diffusion system and we don’t care about. The
other solution can be solved from equations f = g = 0:{− 1

4 + 7p − 5q − p2 + µ1p
µ2+q = 0

q = p − 1.
(7)

According to equations (7), the condition for the existence
of rigidly rotating(q �= 0) is:

µ1 > −5.75µ2. (8)

Now we solve equations (7) and abandon the complex
roots which disagree with our basic assumptions, p ∈ R

and q ∈ R, and thus obtain{
p0 = W

6 + 1
W (+2µ1 + 23

2 + 2
3µ2

2) − 1
3µ2 + 1

q0 = p0 − 1,
(9)

where

W = −36µ1µ2 + 414µ2 + 108µ1 − 8µ3
2

+3

⎛
⎜⎝

−36501 + 12696µ2
2 − 19044µ1 − 1104µ4

2

−5520µ2
2µ1 − 2016µ2

1 − 48µ2
2µ

2
1 − 192µ3

1

−192µ3
2µ1 + 9936µ1µ2 − 864µ2

1µ2

⎞
⎟⎠

1
3

.

The conditions of Hopf bifurcation can be computed by
linear stability analyse of equations (6). The Jacobian Ma-
trix at the steady state (p0, q0) is:

J =
(

2p0

(
7− 2p0+ µ1

µ2+q0

)
2p0

(− 5 − µ1p0
(µ2+q0)2

)
2q0 2p0 − 4q0 − 2

)
. (10)

On the Hopf bifurcation point, the trace and the determi-
nant of matrix J satisfy:

tr =

4p3
0 + (4µ2−16)p2

0−(2µ1 + 12µ2−10p0)p0 − 2µ2 + 2
µ2 + p0 − 1

=0

(11a)

det =

4p0

⎛
⎝2p4

0 + (−8 + 4µ2)p3
0 + (12 + 2µ2

2 − 12µ2)p2
0+

(−8 + 12µ2 − 4µ2
2 + µ1 − µ1µ2)p0+

µ1µ2 − 4µ2 + 2 − µ1 + 2µ2
2

⎞
⎠

(µ2 + p0 − 1)2
> 0.

(11b)

Fig. 3. Phase diagram in parameter space (µ1, µ2) of the mod-
ulated ODE model (6). All the index numbers have exactly the
same meanings as Figure 2. The four borderlines between the
adjacent regions correspond to: equation (8) (the line between
Region I and II), equations (12a) (the line between Region II
and III), Region IV (the line between between Region III and
Region V) that is computed numerically and equations (12b)
(the line between Region V and VI).

The condition for Hopf bifurcation is determined by equa-
tions (11). Given the steady state (p0, q0), we have the
critical borders of Hopf bifurcation:

µ1 = −11
6

(1 + 2µ2) (12a)

µ1 = − 7
10

(3 + 2µ2). (12b)

From equations (8) and (12a), we can portrait the phase
diagram of the solution of the modulated ODE model in
the parameter space (µ1, µ2), as shown in Figure 3. By nu-
merically computing the ODE system equations (3) and
(6), we can distinguish six different regions with four bor-
derlines in the parameter plane: I: steady state; II and
VI: Periodic spirals; III: Epicycloid spirals (inward-petal
meandering); IV: linear drift spirals; V: Hypocycloid spi-
rals (outward-petal meandering). The four borderlines be-
tween the adjacent regions correspond to: equation (8)
(the line between Region I and II); equations (12a) (the
line between Region II and III); Region IV (the line be-
tween Region III and Region V) and equations (12b) (the
line between Region V and VI). Region IV is computed
numerically which cannot be given analytically because it
is far from the Hopf bifurcation point.

Comparing Figures 2 and 3, it is obvious that the
qualitative features of the original reaction-diffusion equa-
tions equations (1) are satisfactorily revealed by the sim-
plified ordinary-differential-equation model equations (6).
It means that the excitability modulation for parameter ε
can effectively cause the Hopf bifurcation of the original
steady periodic spirals solutions and make the spiral tip
meandering.
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4 Concluding remarks

In conclusion, we have introduced an spatiotemporal mod-
ulation for the excitability of reaction diffusion system of
Barkley model, which can make the spiral wave tip me-
andering, including inward-petal and outward-petal me-
andering, as well as linear drift. The theoretical analysis
based on the ODE model coincides very well with what
we obtain in the original excitable media.

This work is supported by National 973 project of Nonlinear
Science and the National Science Foundation of China (Grant
Nos. 10335010).
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